Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant
نویسندگان
چکیده
Limited seed or pollen dispersal enhances spatial genetic relatedness between individuals (fine-scale spatial genetic structure, FSGS), which usually decreases as a function of physical distance. However, such isotropic pattern of FSGS may not always occur when spatially asymmetric processes, for instance, wind direction during dispersal, are considered in wind-pollinated and -dispersed plants. This study assessed the pattern of FSGS in the keystone tropical wetland plant Cyperus papyrus (papyrus) as a function of these isotropic and anisotropic processes. We tested the hypothesis that the FSGS would be influenced by predominant wind direction during pollen and seed dispersal, as well as by the physical distance between individuals. We genotyped a total of 510 adults and 407 juveniles from three papyrus swamps (Ethiopia) using 15 microsatellite markers. In addition, the contemporary directional dispersal by wind was evaluated by seed release-recapture experiments and complemented with parentage analysis. Adults and juveniles differed in the strength of isotropic FSGS ranging from 0.09 to 0.13 and 0.12 to 0.16, respectively, and this suggests variation in dispersal distance. Anisotropic FSGS was found to be a function of asymmetric wind direction during dispersal/pollination that varied between sites. Historical gene dispersal distance was astoundingly low (<4 m), possibly due to localized seed rain. According to our contemporary dispersal estimates, mean pollen dispersal distances were longer than those of seed dispersal (101 and <55 m, respectively). More than two-thirds of seeds and half of pollen grains were locally dispersed (≤80 m). The difference in historical and contemporary dispersal distance probably resulted from the asymmetric wind direction due to change in vegetation cover in the surrounding matrix. We further concluded that, in addition to wind direction, post-dispersal processes could influence gene dispersal distance inferred from the FSGS.
منابع مشابه
Landscape‐scale deforestation decreases gene flow distance of a keystone tropical palm, Euterpe edulis Mart (Arecaceae)
Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim wa...
متن کاملSpatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows
BACKGROUND Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. METHODS AND RESULT...
متن کاملAltitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS ...
متن کاملStochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy
The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference c...
متن کاملNew interpretations of fine-scale spatial genetic structure.
Recent methodological advances permit refined inferences of evolutionary processes from the fine-scale spatial genetic structure of plant populations. In this issue of Molecular Ecology, Born et al. (2008) exploit the full power of these methods by examining effects of ancient and recent landscape histories in an African rainforest tree species. The authors first detected admixture of distinct ...
متن کامل